北京pk10技巧

怎么样评估统计显著性 应该怎么做?

来源:互联网
责任编辑:王嘉善
 综合 
字体:

共同创作人Bess Ruff这篇文章由Bess Ruff共同创作。 Bess Ruff是美国佛罗里达州的一名地理学博士研究生。她曾就读于加州大学圣塔芭芭拉分校布伦环境科学与管理学院,并于2016年获得了环境科学与管理专业文学硕士学位。

本文引用了14条参考,详情参见页面底部。

北京pk10技巧在本文中:设计实验计算标准方差确定显著性14 参考

检验假设需要以统计分析为依据。统计显著性是用p值来计算的,这个值告诉我们在特定命题,或者说零假设为真的情况下,得到预计结果的概率。[1]如果p值小于通常为0.05的显著性水平值,那么实验者可以认为零假设是错误的,并接受备择假设。你可以使用简单的t检验来计算p值,并确定数据集中两个不同组之间的差异显著性。

部分 1设计实验

以Assess Statistical Significance Step 1为标题的图片

1定义假设。评估统计显著性的第一步是确定你想回答的问题,并提出你的假设。这个假设涉及到你的实验数据和人群中可能出现的差异。对于任何实验而言,必须既有零假设,又有备择假设。[2]一般来说,你会比较两个组,看它们是否相同。

零假设H0通常表示两个数据集之间没有差异。例如:课前预习教材的学生期末成绩不会更好。

而备择假设Ha与零假设相反,它是你试图用实验数据支持的命题。例如:课前预习教材的学生期末成绩会更好。

以Assess Statistical Significance Step 2为标题的图片

2设置显著性水平,以确定数据被视为显著时所需的异常程度。显著性水平也被称为α,它是你为了确定显著性而设置的阈值。如果你的p值小于等于设定的显著性水平,数据就被认为具有统计显著性。[3]

一般来说,显著性水平α通常被设置成0.05,换而言之,在你的数据中偶尔观察到差异的概率仅为5%。

置信水平越高时,p值越小,结果也越显著。

如果你想让自己的数据具有较高的置信水平,可以把p值设到0.01以下。在制造业中,检查产品缺陷通常会用到较小的p值。因为每个零部件都必须达到很高的置信水平,使之能够按照预期发挥作用。

对于假设驱动型实验,0.05的显著性水平是可以接受的。

以Assess Statistical Significance Step 3为标题的图片

3确定使用单侧检验还是双侧检验。t检验的适用条件之一是你的数据呈正态分布。正态分布的数据会形成钟形曲线,大部分样本位于中间。[4]t检验是一种数学检验,可以确定你的数据在曲线“尾部”是否落在正态分部以外,是在曲线以上还是以下。

单侧检验比双侧检验更强大,因为它在一个方向检验关系的潜力,比如控制组以上,而双侧检验在两个方向检关系的潜力,比如控制组以上或以下。[5]

如果你不确定自己的数据是在控制组以上还是以下,那就使用双侧检验。这样你就能检验任一方向的显著性。

如果你知道数据会朝哪个方向发展,请使用单侧检验。在前文给出的例子中,你预计学生的成绩会提高,所以你可以用单侧检验。

以Assess Statistical Significance Step 4为标题的图片

4使用功效分析来确定样本量。检验功效指的是在特定的样本量下,观察到预期结果的概率。功效或β的常见阈值是80%。缺乏一些初步数据时,功效分析可能有点棘手,因为你需要一些关于每组之间平均值及其标准方差的信息。你可以使用网上的功效分析计算器,来确定自己数据的最佳样本量。[6]

开展大型、全面的研究时,研究人员通常会做一个小型的先导型研究,以获得功效分析所需的信息,并确定其样本量。

如果没有办法做复杂的先导型研究,你可以阅读文献和其他人做过的研究,据此来估计可能的平均值。在确定样本量时,这是一个很好的着手点。

部分 2计算标准方差

以Assess Statistical Significance Step 5为标题的图片

1确定标准方差公式。标准方差是衡量数据分布情况的指标。它向你提供了样本中各数据点的相似性信息,有助于确定数据是否显著。乍一看,你可能觉得公式有点复杂,但是以下步骤会引导你完成计算过程。其公式是s = √∑((xi – μ)2/(N – 1))。

s是标准方差。

∑指对收集的所有样本值求和。

xi表示你数据的各单独值。

μ是每组数据的平均值。

N是样本总数。

以Assess Statistical Significance Step 6为标题的图片

2计算每组样本的平均值。要想计算标准方差,你必须先计算每组样本的平均值。平均值用希腊字母μ表示。它的计算方法很简单,只需将每个值相加,再除以样本总数即可。[7]

例如,为了计算课前预习教材的学生组的平均成绩,让我们来看一些数据。为了简便起见,我们会使用包含5个值的数据集:90、91、85、83和94。

将所有样本相加求和:90 + 91 + 85 + 83 + 94 = 443。

用和除以样本数N = 5:443/5 = 88.6。

这组学生的平均成绩是88.6。

以Assess Statistical Significance Step 7为标题的图片

3用每个样本减去平均值。计算的下一步涉及到公式的(xi – μ)部分。你需要用每个样本减去刚刚计算得出的平均值。在我们的例子中,你必须做五次减法。

(90 – 88.6)、(91- 88.6)、(85 – 88.6)、(83 – 88.6)和(94 – 88.6)。

计算所得的结果是1.4、2.4、-3.6、-5.6和5.4。

以Assess Statistical Significance Step 8为标题的图片

4将这些数字平方后再相加。这时,你需要计算刚刚得出的每个数字的平方。这一步还会处理掉所有负号。如果在此步骤之后或计算结束时有负号,说明你可能忘了算这一步。

在我们的例题中,那五个数字的平方是1.96、5.76、12.96、31.36和29.16。

将这些平方值相加,得到:1.96 + 5.76 + 12.96 + 31.36 + 29.16 = 81.2。

以Assess Statistical Significance Step 9为标题的图片

5除以样本总数减一。公式除以N-1,是因为你没有计算所有人的成绩,要进行修正,你只是在所有学生中取了一个样本,来进行估算。[8]

做减法:N – 1 = 5 – 1 = 4

做除法:81.2/4 = 20.3

以Assess Statistical Significance Step 10为标题的图片

6取平方根。除以样本数减一后,取最终数字的平方根。这是计算标准方差的最后一步。有一些统计学应用程序可以在你输入原始数据后,帮你计算标准方差。

在我们的例题中,课前预习的学生期末成绩的标准方差是:s =√20.3 = 4.51。

部分 3确定显著性

以Assess Statistical Significance Step 11为标题的图片

1计算2个样本组之间的差额。至此为止,例题只处理了一个样本组。如果想比较两个样本组,你显然需要两组的数据。计算第二组样本的标准方差,并使用该数值来计算2个实验组之间的差额。差额公式为sd = √((s1/N1) + (s2/N2))。[9]

sd是两组之间的差额。

s1是第1组的标准方差,而N1是第1组的样本量。

s2是第2组的标准方差,而N2是第2组的样本量。

例如,假设第2组数据,即课前没有预习的学生的数据样本量是5,而标准方差是5.81。差额为:

sd = √((s1)2/N1) + ((s2)2/N2))

sd = √(((4.51)2/5) + ((5.81)2/5)) = √((20.34/5) + (33.76/5)) = √(4.07 + 6.75) = √10.82 = 3.29。

以Assess Statistical Significance Step 12为标题的图片

2计算数据的t分数。t分数可以将数据转化为能够与其他数据进行比较的形式。你可以使用t分数来做t检验,计算两组之间存在显著差异的可能性。t分数的公式是t = (μ1 – μ2)/sd[10]

μ1是第一组的平均值。

μ2是第二组的平均值。

sd是样本之间的差额。

你应该使用较大的平均值作为μ1,以免t值变成负数。

例如,假设第2组没有预习的学生的样本平均值是80。则t分数为:t = (μ1 – μ2)/sd = (88.6 – 80)/3.29 = 2.61。

以Assess Statistical Significance Step 13为标题的图片

3确定样本的自由度。使用t分数时,自由度的数值是用样本量确定的。将两组的样本数相加,然后减2。在我们的例子中,自由度(d.f.)是8,因为第1组有5个样本,而第2组也有5个样本,(5 + 5) – 2 = 8。[11]

以Assess Statistical Significance Step 14为标题的图片

4使用t表格来评估显著性。你可以在标准的统计学书籍或网上找到t分数[12]和自由度表格。查找包含数据自由度的行,找到与t分数对应的p值。

当自由度为8,t值为2.61时,单侧检验的p值介于0.01和0.025之间。由于我们将显著性水平设置为小于等于0.05,所以我们的数值具有统计显著性。得到这一数据后,我们可以拒绝零假设,接受备择假设:[13]课前预习教材的学生会取得更好的期末成绩。

以Assess Statistical Significance Step 15为标题的图片

5考虑后续研究。许多研究人员会使用少量的数据,做一个小规模的先导型研究,以帮助自己了解如何设计一个规模更大的研究。使用更多的数据,做另一项研究,有助于提高你对结论的信心。

后续研究可以帮助你确定自己的结论是否包含I型错误或II型错误。前者指在没有差异的情况下观察到差异,或错误的拒绝零假设,而后者指在有差异时未观察到差异,或错误的接受零假设。[14]

小提示

统计学是一个庞大而复杂的学科。你可以学习高中、大学或更高级别的统计推断课程,帮助自己理解统计显著性。

警告

这种分析针对的是t检验,后者检验的是两个正态分布人群之间的差异。根据数据集复杂程度的不同,你可能得使用不同的统计学检验方法。

参考

↑ http://blog.minitab.com/blog/adventures-in-statistics/how-to-correctly-interpret-p-values↑ https://statistics.laerd.com/statistical-guides/hypothesis-testing-3.php↑ http://www.stat.yale.edu/Courses/1997-98/101/sigtest.htm↑ https://web.csulb.edu/~msaintg/ppa696/696stsig.htm#INTERPRET THE Chi↑ https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-what-are-the-differences-between-one-tailed-and-two-tailed-tests/↑ http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-1-Sided↑ https://www.mathsisfun.com/data/standard-deviation-formulas.html↑ https://www.mathsisfun.com/data/standard-deviation-formulas.html↑ http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4a.html↑ http://archive.bio.ed.ac.uk/jdeacon/statistics/tress4a.html↑ http://www.kean.edu/~fosborne/bstat/07b2means.html↑ http://www.sjsu.edu/faculty/gerstman/StatPrimer/t-table.pdf↑ https://statistics.laerd.com/statistical-guides/hypothesis-testing-3.php↑ https://www.stat.berkeley.edu/~hhuang/STAT141/Lecture-FDR.pdf显示 更多... (5)

相关wikiHows

如何

计算圆面积

改变自己的声音

如何

改变自己的声音

计算三角形面积

如何

计算三角形面积

求三角形的高

如何

求三角形的高

销毁敏感文件

如何

销毁敏感文件

画六边形

如何

画六边形

计算正方形的对角线

如何

计算正方形的对角线

计算百分数

如何

计算百分数

写小说

如何

写小说

求3X3矩阵的逆矩阵

如何

求3X3矩阵的逆矩阵

求六边形面积

如何

求六边形面积

开始一场辩论

如何

开始一场辩论

因式分解三次多项式

如何

因式分解三次多项式

区分英语中的“Its”和“It's”

如何

区分英语中的“Its”和“It's”

根据您访问的内容,您可能还对以下内容感兴趣,希望对您有帮助:

请问有人知道显著性评估方法NSS扥代码吗?

北京pk10技巧答:显著性水平就是那个sig值,不都是0么,怎么会没有达到显著水平0.01啊,应该都显著的埃

检测图像的显著性,通常评估时都会用到P-R曲线(准...

答:检测图像的显著性,通常评估时都会用到P-R曲线(准确率-召回率),F-值,ROC曲线等等。 50 这些曲线一般都用MATLAB画,想问一下,怎么画呢?有没有代码之类的。...


娱乐时尚
科技资讯
历史文化
真视界
旅游美食
精彩图文
我爱我车
母婴健康
Copyright © 2004-2018 powayart.com All Rights Reserved. 布客网 版权所有
京ICP备10044368号-1 京公网安备11010802011102号
北京pk10开奖记录-联盟欢迎您 北京pk10开奖记录-联盟欢迎您 北京pk10开奖记录-联盟欢迎您 北京pk10开奖记录-联盟欢迎您 北京pk10开奖记录-联盟欢迎您 document.write ('');